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Regenerative Medicine

Khademhosseini A et al. PNAS 2006;103:2480-2487

- Ex vivo

- In situ
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§ Critical bone defects and non-unions
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Why are we interested in regenerative medicine in 
orthopedics?

§ Critical bone defects and non-unions
§ Spinal fusion
§ Articular cartilage injuries
§ Ligament and tendon injuries



Articular 
Cartilage 

Bone formation for 
spinal fusion 

Growth Plate 
Cartilage 

- Stem cells + bone allografts 
- Biological agents

- Prevention of post-traumatic 
osteoarthritis in skeletally 
immature animals

- Growth plate cartilage biology
- Growth plate repair strategies
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Growth plate injuries can result in growth deformities

§ Approximately 1 in 2 boys and 1 in 3 girls will sustain a fracture during childhood1

§ 18-30% of pediatric fractures involve the growth plate2

1. Mäyränpää, M.K., et al., J Bone Miner Res 25, 2752, 2010.
2. Mann, D.C., et al. J Pediatr Orthop 10, 713, 1990.
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Growth Plate Injuries: Current Treatments
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growth plate volume

§ 2 years or 2 cm of growth 
remaining

BONY BAR RESECTION
18-30% poor outcome

ARTIFICIAL CLOSURE OF 
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Prone to infections, multiple hospitalizations

§ bony bar spans >50% of 
growth plate volume

NO treatment is attempting to regenerate the growth plate cartilage



Research Program Focus

Prevent Bony 
Bar Formation

Regenerate 
Growth Plate 

Cartilage

Developing functional regenerative medicine approaches 
to treat growth plate injuries.

Restore 
Normal Bone 
Elongation
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Project #1: Determine whether local delivery of an anti-
angiogenic factor after  growth plate injury will prevent bony 
bar formation
§ Vascular endothelial growth factor (VEGF) influences bony bar formation1.

1Fischerauer, E., et. al. J Mol Hist (2011) 42:513–522



Systemic anti-VEGF antibody reduces bony bar

Chung R., et al. J Endocrinol 2014; 221:63-75. 



^^ or ^^^ comparison to the untreated control
### comparison to uninjured anti-VEGF-treated group 
(*P<0.05, ^^, **P<0.01 and ^^^, ###, ***P<0.001).

Systemic anti-VEGF antibody reduces bony bar but also 
reduces limb lengthening

Chung R., et al. J Endocrinol 2014; 221:63-75. 

Resting zone

Proliferative zone

Hypertrophic zone

VEGF

Vessel

Osteoprogenitor

Hall et. al. 2006 Toxic Pathol



Hypothesis: Local delivery of anti-VEGF after growth plate 
injury in rats will reduce bony bar formation without affecting 
limb lengthening

Alginate-Chitosan Hydrogel
Anti-VEGF Antibody



Alginate:
Anionic polysaccharide

Alginate mixed with chitosan forms a polyelectrolyte 
complexed hydrogel

Chitosan: 
Cationic polysaccharide

Used extensively for cartilage regeneration Used extensively for drug delivery

Collaboration with Melissa Krebs, PhD – Colorado School of Mines



Alginate:
Anionic polysaccharide

Alginate mixed with chitosan forms a polyelectrolyte 
complexed hydrogel

Chitosan: 
Cationic polysaccharide

Ca2+Ca2+Ca2+

Used extensively for cartilage regeneration Used extensively for drug delivery

Varying alginate:chitosan ratio and calcium crosslinking 
can fine-tune biomaterial properties



Release of antibodies can be modulated in alginate-chitosan 
hydrogels

Fletcher N. et al. Mater. Sci. and Eng. C. 2016; 801-806. 
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Release of antibodies can be modulated in alginate-chitosan 
hydrogels
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Quick Release = Alginate:chitosan 90:10 

Slow Release = Alginate:chitosan 50:50



Study Design

Alginate:Chitosan Hydrogel

Anti-VEGF Antibody
~7ug anti-VEGF165

Chris Erickson, PhD

Treatment groups Hydrogel name α-VEGF Outcomes
1 Intact - - • MicroCT, histology

• Perfusion/Blood 
vessels

• Limb growth

• N = 8 limbs total (4 
male, 4 female) per 
time point per 
outcome

2 Untreated - -

3 Alginate:chitosan 90:10 Quick Release -

4 Alginate:chitosan  90:10 +
anti-VEGF antibody

Quick Release + 
α-VEGF

+

5 Alginate:chitosan 50:50 Slow Release -

6 Alginate:chitosan 50:50 + 
anti-VEGF antibody

Slow Release + 
α-VEGF

+



Local delivery of α-VEGF reduces bony bar formation

Mean +/- SD, one-way ANOVA, N = 8
*P<0.05 vs. Untreated same time point



Quick delivery of α-VEGF increases cartilaginous repair 
tissue

Mean +/- SD, one-way ANOVA, N = 8
*P<0.05 vs. Untreated same time point

#P<0.05 vs. QR+aVEGF same time point

Blue = cartilage



Local delivery of α-VEGF reduces vessel formation at injury 
site

Mean +/- SD, one-way ANOVA, N = 8
*P<0.05 vs. Untreated same time point

$P<0.05 vs. QR same time point



Local delivery of α-VEGF does not affect average physeal 
height

Mean +/- SD, one-way ANOVA, N = 8



Local delivery of α-VEGF does not affect limb lengthening

Mean +/- SD, Repeated measured 2-way ANOVA, n=8

1. Untreated < all groups at 2 weeks
2. Intact & Quick Release + α-VEGF > Untreated all times
3. Intact > Slow Release + α-VEGF at 16, 20, 24 weeks

# P<0.05 vs Quick Release + α-VEGF 
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Male limb growth
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Statistical differences at 2 weeks only

At 24 weeks

Intact vs. SR 
P=0.08.

Intact vs. 
SR+αVEGF 

P=0.06.
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Conclusion and Future Directions

§ Conclusions
§ Local delivery of α-VEGF reduces bony bar formation
§ Quick delivery of α-VEGF increases cartilaginous tissue formation
§ Local delivery of α-VEGF does not affect limb lengthening, or adjacent physis
§ There are differences between Quick Release and Slow Release hydrogels

§ Future directions
§ Understand which cells are being affected by the anti-VEGF, and how that is leading to decreased bony bar, 

decreased vessels, increased cartilage
§ Reevaluating the growth plate injury model in male and female rats
§ Combining α-VEGF with pro-chondrogenic factor (TGF, IGF) to promote chondrogenesis 
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Multidisciplinary Team

3D Printed 
Implant 

• Engineering a 
biomimetic of 
growth plate 

cartilage

Virginia Ferguson, PhD
- Bone and cartilage tissue 

characterization
- 3D printing

Stephanie Bryant, PhD
- Cartilage mimetic 

hydrogel
- 3D printing

Nancy Hadley Miller, MD
- Clinical experience

Karin Payne, PhD
- Animal models of 

growth plate injury
- Cartilage tissue 

engineering



Cartilage Mimetic Hydrogel Induces Chondrogenesis of 
MSCs

Cartilage	Biomimetic	and	Biodegradable	Hydrogel
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Elizabeth Aisenbrey, PhD

Photopolymerizable cartilage mimetic hydrogel



Testing Cartilage Mimetic Hydrogel in a Rat Model of 
Growth Plate Injury Francisco Rodriguez Fontan, MD

Healthy rat femoral growth plate

28 days post-injury



Cartilage Mimetic Hydrogel with TGF𝛽3 Reduced Bony 
Bar Formation

N=4-6, * vs. Intact, # vs. Untreated, + vs. Hydrogel



Cartilage Mimetic Hydrogel with TGF𝛽3 Formed New 
Cartilage Tissue

Blue = cartilage
Red = Bone



Resting
Zone

Proliferating
Zone

Hypertrophic
Zone

New
Bone

Characterize 
zonal properties 
and morphology 

of the rabbit 
growth plate

3D Printed structure

Scanning electron 
microscopy showing 

individual pillars

3D printing technology

Hydrogel makes stem cells form cartilage tissue (green)
Hydrogel (green) can be 
injected in between the 

individual pillars

hydrogel

pillar

Combining Hydrogel and 3D Printing

3D Printed 
structure is infilled 

with hydrogel



Mechanical Properties Across the 
Growth Plate

Kevin Eckstein, MS

Representative heatmaps of 
tensile modulus, E!, 
compressive modulus, E", 
and permeability, 𝑘.

Gradients in stiffness found 
within individual zones of 
physeal cartilage.

Sharp decline in 
stiffness in hypertrophic 
region.†

Microindentation maps two gradients in mechanical properties 
across the zones of the growth plate



3D Printing Technology
§ Layer-by-layer 3D printing by stereolithography (SLA)

Camila Uzcategui

Variable properties in 3D printed structures by SLA

Developed methods to achieve uniform properties in 3D printed structures by SLA

Uzcategui AC et al. Adv Eng Mater. 2018; 20(12)



Integration of Cartilage Mimetic Hydrogel with Stiff Structure
Archish Muralidharan

Red = stiff pillars
Green = cartilage mimetic hydrogel

High conversion in pillars
- No integration

Shell of low conversion
around pillars
- Integration



Testing the 3D printed construct in vivo
Rabbit model of proximal tibia physeal injury

Groups Total number 
of rabbits

Untreated 10
Fat Graft 9
Cartilage mimetic 
hydrogel 10

3D structure infilled 
with cartilage 
mimetic hydrogel

10Right tibia: injured
Left tibia: intact 

Yangyi Yu, MD

6 mm x 6 mm x 2 mm



3D Printed Implant Led to Decreased Limb Length Discrepancy

Limb length discrepancy = 
Left tibia (Intact) – right tibia (Injured)
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No Treatment Led to an Improvement in Tibial 
Angle 
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– Tibia angle (8 weeks post-treatment)



A CB D

MicroCT and Histology 8 weeks post-implantation



Mineralization within 3D Printed Implant
Kristine Fischenich, PhD 



Effect of mechanical stiffness of the implant

Mean +/- SD
N=8/group
* vs. 8 weeks

100 kPa

500 kPa

1 MPa



Discussion

§ Able to characterize the mechanical properties of rabbit growth 
plate

§ Able to 3D print highly tunable structures of graded mechanical 
properties

§ Established a rabbit model of growth plate injury
§ 3D printed structure infilled with hydrogel leads to

§ Increased tibial lengthening
§ Evidence of cartilage tissue formation
§ Evidence of mineralized tissue around pillars



Future Directions

§ Fine-tune mechanical properties of structure to mimic the rabbit growth plate
§ Study addition of stem cells - endogenous and exogenous
§ Long-term study (16 weeks and 1 year)
§ Characterizing human growth plate cartilage



Characterization of human growth plate

§ Growth plate size across sex and age groups 
§ Mechanical properties across sex and age groups 

§ Clinical images (epidemiology study at Children’s Hospital Colorado)
§ 2008-2018
§ 14,436 long bone fractures of the tibia or femur
§ Approx. 11.6% involve the growth plate (1,675)

§ 2 sources of tissue
§ Discarded surgical tissue from Children’s Hospital Colorado
§ Donor tissue from AlloSource

Provides input 
for 3D 

printing/scale-up



Conclusion/Clinical Translation

Prevent Bony 
Bar 

Formation
Block 

angiogenesis

Regenerate Growth 
Plate Cartilage
- Hydrogel with 

chondrogenic 
factors

- 3D printed implant

Restore 
Normal Bone 
Elongation
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